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A Monte Carlo algorithm for simulating master equations with time-dependent 
transition rates is described. It is based on a waiting time image, and takes into 
account that the system can become frozen when the transition rates tend to 
zero fast enough in time. An analytical justification is provided. The algorithm 
reduces to the Bortz-Kalos-Lebowitz one when the transition rates are con- 
stant. Since the exact evaluation of waiting times is rather involved in general, 
a simple and efficient iterative method for accurately calculating them is intro- 
duced. As an example, the algorithm is applied to a one-dimensional lsing 
system with Glauber dynamics. It is shown that it reproduces the exact analyti- 
cal results, being more efficient than the direct implementation of the Metropolis 
algorithm. 

KEY WORDS: Monte Carlo simulation; master equations; time-dependent 
transition rates; waiting times. 

I. I N T R O D U C T I O N  

In the pas t  years,  mode l  sys tems whose  dynamics  is based  in a m a s t e r  
equa t i on  fo rmu la t i on  have  been  extensively used in different fields of  
statist ical  physics.  In par t icular ,  m a n y  mas t e r  e q u a t i o n  mode l s  have  been  
i n t r o d u c e d  in o rde r  to s tudy the basic m e c h a n i s m s  of  glass t r ans i t ion  
p h e n o m e n a ,  t~) and  qui te  a re levant  pa r t  of  this b e h a v i o r  has  been  qual i-  
tat ively u n d e r s t o o d ,  t2) Also, in the research  of  s tochas t ic  r e sonance  and  
rela ted p rob lems ,  some mas t e r  e q u a t i o n  mode l s  have  been  p roposed ,  t3) 

A l t h o u g h  the t rans i t ion  rates  a p p e a r i n g  in a M a r k o v i a n  m a s t e r  equa-  
t ion do n o t  d e p e n d  on t ime strictly speaking ,  14) t ime d e p e n d e n t  t r ans i t ion  
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rates have been considered in many of the above cited models. In general, 
the transition rates depend on some parameters that can be externally con- 
trolled, such as the temperature, external forces, etc. These parameters are 
considered as constants in time in the usual derivations of the master equa- 
tion for a Markov process. When they are forced to vary in time following 
a given law, the simplest possibility is to assume that the master equation 
remains valid, substituting the constant parameters by the corresponding 
functions of time. Of course, this is an hypothesis that may not be 
necessarily fulfilled by any stochastic description, iS) However, the above 
simple approach has been used in many of the papers in refs. 1, 3 and 
found to be useful to understand the dynamics of driven systems. For the 
glassy systems in ref. 1, the externally controlled parameter is the tem- 
perature, which appears in the transition rates because of the detailed 
balance condition. 

Master equations are often difficult to solve by analytical methods. 
Then, numerical approaches are frequently introduced. For time inde- 
pendent transition rates, two Monte Carlo procedures are usually used, the 
Metropolis algorithm t6~ and the Bortz-Kalos-Lebowitz (BKL) algo- 
rithm, tT) Both of them provide a numerical solution to the master equa- 
tion. tS) Nevertheless, both approaches are quite different in spirit. In the 
Metropolis algorithm a trajectory of the system is built as an equidistant 
in time chain of configurations. For a given configuration, a possible transi- 
tion is considered and it is accepted with probability equal to its corre- 
sponding transition rate. Thus rejections of transitions are possible, and 
two consecutive configurations can coincide. The probability of rejection 
increases when the transition rate decreases, giving rise to many failed 
attempts of doing a transition and slowing down the algorithm. 

On the other hand, the B KL algorithm is based on a waiting time 
image, i.e. the system spends a waiting time in a given state before making 
a transition to another one. A trajectory of the system is built by assigning 
a waiting time to the initial configuration. Then, the new state to which the 
system goes is chosen with a probability proportional to the corresponding 
transition rate. Afterwards, another waiting time for the new configuration 
is given, etc. Therefore, one trajectory of the system is not a chain of con- 
figurations at equidistant times, since the waiting times are random func- 
tions of the transition rates. As a consequence, we construct the probability 
distribution at any time, and no rejections are present. In the small transi- 
tion rates regime, waiting times are large and the algorithm becomes very 
efficient. 

The Metropolis procedure is easily extended to the time-dependent 
case, by approximating the transition rates by piecewise constant functions 
through time intervals of width At. Over each of those intervals one works 
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as in the case of constant transition rates, and the final configuration of an 
interval is taken as the initial state for the following one, in which the 
transition rates are up-dated. This procedure should be exact in the limit 
A t e 0 .  

The extension of the BKL algorithm requires some care. The piecewise 
approximation is not enough by itself, because the random function of the 
transition rates giving the waiting times is not bounded. It is possible that 
the time of arrival to a given state and the time of departure from it, which 
differ by the waiting time, correspond to different values of the transition 
rates. From a theoretical point of view, the BKL assignment of waiting 
times is based on the fact that the waiting time distribution is purely 
exponential. This simple property is not valid when the transition rates 
depend on time, but, in principle, one can try to modify the BKL algorithm 
so as to numerically solve master equations with time dependent rates. 

When trying to extend the BKL algorithm to master equations with 
time dependent rates, the main point is to introduce the correct distribu- 
tion of waiting times and to generalize the way of choosing the specific 
transitions actually made by the system. The result would be a generalized 
waiting time (GWT) algorithm. The effort of developing it, which is the 
principal purpose of this paper, is worth because this GWT algorithm is 
expected to be more efficient than the Metropolis one for small values of 
the transition rates. For instance, this is the case when studying glassy 
behavior with model systems described by master equations. In fact, we have 
already applied the GWT algorithm developed in this paper to a simple 
model with purely entropic barriers showing glass-like behavior, t9) 

The plan of the paper is as follows. In Sec. II the waiting time distribu- 
tion for the case of time dependent rates is introduced. In general, this dis- 
tribution is only normalized to unity if the possibility of the system being 
frozen is taken into account. The latter appears when the transition rates 
vanish in the long time limit. The GWT Monte Carlo algorithm is intro- 
duced in Sec. III, where it is shown that it reduces to the B KL algorithm 
for constant rates. A proof showing that the GWT algorithm provides a 
numerical solution to the master equation is given in the Appendix. The 
exact evaluation of waiting times may be rather involved and, therefore, an 
accurate procedure is developed in Sec. IV. It is based on approximating 
the time dependent transition rates by piecewise constant functions. 
Section V deals with the application of the GWT algorithm to a one- 
dimensional Ising model with Glauber dynamics. Thermal cycles of cooling 
up to low temperatures and subsequent reheating are considered. It is 
found that the GWT algorithm is faster than the Metropolis one when the 
cycle reaches the low temperature region. Finally, a short summary of the 
paper is given in Sec. VI. 
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II. THE W A I T I N G  T IME D ISTRIBUT ION 

We consider a system with a discrete range of states and whose 
dynamics is described by a master equation with time-dependent transition 
rates, i.e. the probability p~(t) of finding the system in state i at time t obeys 
the equation 

dp,(t) 
dt - ~ [ W~ t) pj( t) - Wj.~( t) pi( t) ] ( 1 ) 

J 

where Wj.~(t) is the transition rate from state i to state j at time t. Its time 
dependence is assumed to be given. The total transition rate from state i is 

g2,(t) = ~ Wj.~(t) (2) 
j # i  

Let q~(t + r lt) be the probability that the system remains in state i at 
time t + r, given it was in the same state at time t, so that no transition has 
occurred in the time interval between t and t + r. The time evolution of this 
quantity is obtained directly from Eq. (1), 

0 
3"r q~(t + t i t ) =  - [2 i ( t  + I:) qi(t + t i t ) .  (3) 

This equation must be solved with the initial condition q~(tlt) = 1; then 

qi(t + t i t ) = e x p  - dt' 12~(t') (4) 

The distribution f . ( t  + r lt) of waiting times r that the system stays in 
state i, after arriving to it at time t and before jumping to another state, is 

f~(r I t ) =  -3--rr qi(t + r l t ) = f 2 i ( t  + Z') exp -- dt' (2~(t') (5) 

For time-independent transition rates, s is a constant and f,. reduces to an 
exponential distribution for r, being independent of t. On the other hand, 
when the transition rates are functions of t, the waiting time distribution 
can be quite complicated. It is then useful to- formally introduce a set of 
different time scales, one for each possible state of the system. For state i 
we define the dimension-less time scale 

s,= dt' I2,(t') (6) 
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When s is positive and finite for all finite t, the above scale transforma- 
tion can be inverted. This is the case for the processes we are interested in 
and we will restrict ourselves to it in the following. It is important to dif- 
ferentiate between two rather different physical situations. Let us consider 

tlim_, dt' Qi(t')--S~ ~) (7) 

If the above limit is finite, s~ ~ provides an upper bound for s i. The mean- 
(~) is clear from Eq. (4). Putting in it t = 0, we have ing of si 

oc,) 

q/*(0) = lim q,(r I 0 ) = e - #  (8) 
r "-'* OC) 

i.e. exp [ - s~  ~ is the probability that, if the system is initially in state i, 
it will remain frozen in this state for ever. There is no transition, even in 
the limit t ~ oo. This phenomenon occurs in many physical systems and, in 
particular, it is responsible of the glassy behavior observed when a system 
is continuously cooled to low temperatures. According to Eq. (7), the con- 
dition for s~ ~) to be finite and, consequently, for the system to become 
frozen in state i is 

lim tQi(t)'-O (9) 
I ---* OO 

This condition depends, in general, on the particular state under considera- 
tion, therefore being possible that only a part of the range of states become 
frozen in a given experiment. Besides, it is clear that no freezing can be 
obtained if the transition rates are constant, since Eq. (9) can not be 
fulfilled. 

The waiting time distribution in the s i scale reads 

gi(a,  l s , ) - -  f i ( v  l t) = e  -~, (10) 

where a i is the scaled waiting time, i.e. 

ft 
t + r  

a , =  dt '12i ( t ' )  (11) 

Note that, in principle, o i depends on both t and r. The expression given 
by Eq. (10) holds for values a i such that 

fo 
+ r  ( o o )  

Si'+'O'i~ dt' Qi(t')<~Si (12) 
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as seen from Eq. (7). Moreover, the probability that the system be frozen 
in state i after arriving to it at time t will be 

q * ( s i )  = lim qi( t + t i t ) =  e -~I~ ' -~ ' )  
Z ' - - ~ O 0  

(13) 

Of course, the normalization condition 

(oo) 

f~ , -s, dtTi gi(  U` I si) + q*(s,) = 1 (14)  

is verified. The first term in the above expression is the probability that the 
system remains any arbitrarily large waiting time in state i, after having 
arrived there at time t. The upper limit in the integral follows from Eq. (12). 
The second term accounts for the probability of the system getting frozen 
in state i at time t. Let us note that, if s~ ~176 is finite, q*(si) approaches unity 
as t ~ oo. This reflects the fact that the probability of the system getting 
frozen in state i grows in time, since the transition probability ~ ( t )  goes 

,.(oo) to zero as t ~ oo for finite ~ . 
The consequence of the above discussion is that the distribution of 

waiting times for state i at time t, including the possibility that the system 
be frozen in that state for ever, can be generated in the following way. 
A random number x uniformly distributed in the interval (0, 1 ) is generated. 
If 

- I n  x ~ s~ ~176 si(t) (15) 

a waiting time r given by 

- I n  x = f t + r dt' I 2 i ( t ' ) = s i ( t  + r ) - s , ( t )  (16) 

is assigned. On the other hand, if 

- l n  x > s~ ~176 si(t) (17) 

the system is considered as frozen in state i. 

III. MONTE CARLO ALGORITHM 

Now we proceed to formulate a Monte Carlo algorithm to solve 
Eq. (1). It is a generalization of the one introduced by Bortz, Kalos, and 
Lebowitz for master equations with time independent transition rates. 
Of course, the basic idea is to generate a set of trajectories of the system 
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distributed according to the stochastic process described by Eq. (1). The 
results should be exact in the limit of an infinite number of trajectories. In 
this section we are going to describe the rules defining the algorithm at a 
intuitive level. A more detailed mathematical justification is given in the 
Appendix. 

We introduce dimension-less transition rates Pj~(t) by 

Pji( t) - Wji( t) 
(2i(t) (18) 

for i ~j .  From this definition and Eq. (2) it follows that 

y'. Pj,(t) = 1 (19) 

It is also convenient to define the quantities 

= g2,(t)  (20)  

and 

"JP~/-)(t) = Zk <j,k~i Wki(t) (21) 
.Qi(t) 

which assume that the states accessible to the system have been ordered 
following an arbitrary criterion. Eqs. (18)-(21) lead to the relationship 

P~+)(t)+PJf-)(t)+Pj~(t)=j~ 1 (22) 

In the simulation a trajectory of the system is constructed in the 
following way: 

1. An initial state is generated according to the initial probability 
distribution pi(0). Suppose that i is the initial state of the system for the 
trajectory we are considering. A random number x~ uniformly distributed 
in the interval (0, 1) is generated. If xt <q*(0),  where q*(0) is given by 
Eq. (8), the trajectory is finished and the system remains frozen in state i 
for ever. Otherwise, a residence time r~ in state i is assigned by means of 
Eq. (16) with t = 0, i.e. 

fo' dt' ~ (t') (23) - l n  x ~  = i 

and we proceed to the next step. 
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2. At t = ~'1, the system is moved from state i to state j. The latter is 
determined by using that, once we know that a transition from state i 
occurs, the relative probability of each of them is given by the reduced 
transition rates Pjg(r~). Then, another random number y~, again between 
0 and 1, is generated and the transition takes place to the state j for which 

P~/-)(r~) < Yl < 1 - P~-i+~(r~) (24) 

i.e. the interval (0, 1) is divided into segments of lengths Pkq(rl), k = 1, 2, 
3,..., i --1,  i + 1 .... , and the transition which is actually realized is the one 
corresponding to the segment inside which y~ lies. 

3. For t = r ~-, the system will be in state j picked out as described in 
the preceding step. A new random number x2 is chosen. If x2 < q*(t), the 
system is considered frozen in state j, and the simulationprocess finished, 
while if x2 t> q*(t) the residence time ~'2 in state j is given by 

ffl I + r 2 - I n  x2 = dt' Dj(t') (25) 
r 

4. Next, step 2 is repeated, now for time r~ + r2, i.e. the distribution 
probability for the possible final states k is given by P~j(r~ + r2), with k # j. 
Once the final state has been determined, step 3 is again applied, and so 
on .  

Unless the time integrals of the total transition rates have a simple 
analytical expression, the calculation of the residence times, as indicated by 
Eqs. (23) and (25), can be quite complicated in practice. This would largely 
increase the computer simulation time. In the next section, we will discuss 
an efficient and accurate approximation which can be used as long as the 
transition rates are smooth functions of time. 

When the transition rates are time independent, the above prescription 
for the assignment of residence times reduces to the BKL o n e .  tT) For con- 
stant O~, Eq. (11) reads 

~ i = "~O i (26) 

so that Eq. (16) is easily solved for the residence time r, 

In x 
r = (27) 

Di 

This is precisely the expression for the waiting times used in ref. 7. Besides, 
in the basic BKL algorithm, the state to which the transition takes place 
is determined as described in step 2. However, when there is a great number 
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of possible transitions from a given state, a simplification can be introduced, 
because it is usually found that many of the transitions are equiprobable. 
Then, it is useful to classify the transitions according to their rate and slightly 
modify the procedure for choosing the transition that is going to be carried 
out. The situation is similar for time dependent transition rates. The only 
difference is that they must be up-dated for each transition, as indicated in 
steps 2 and 4. Since the details of the modification have been discussed in 
detail by Bortz, Kalos, and Lebowitz they will not be given here. This 
alternative method for determining the final state of a transition is 
described and used in the example discussed in Sec. V. 

IV. AN EFFICIENT SCHEME FOR THE CALCULATION 
OF WAITING TIMES 

The determination of the waiting time r in state i after arriving to it 
at time t requires solving Eq. (16). Here we discuss a numerical method to 
obtain ~ which is useful when an analytical expression can not be found. 
We introduce a discretization of time by defining intervals I,,, all of them 
of the same amplitude At, 

I,  = It,,_ t, t,,) (28) 

with t ,=nAt ,  n =  1, 2, 3 ..... The extension of the method to intervals of 
different amplitude is straightforward. Notice that for the sake of precision 
the intervals have been defined as open to the right. It is assumed that At 
is chosen such that the total transition rates D, can be considered as 
approximately constant inside each of the intervals. If they are smooth 
continuous functions of time, this implies that 

c3s 
0 - 7  At << ~r (29) 

for all states and times inside the region of interest. Of course, the method 
also holds if the transitions rates are a succession of steps taking place 
at regular intervals At, becoming then exact. We assign to each interval a 
constant value of the transition rates, i.e. 

D,(t) =12~ n~ (30) 

for t ~ In There are many possible criteria to fix the value of I2 <n~ Some of 
�9 i ~ 

them are: 



718 Prados e t  al. 

t') = I2,(t.) (31a) t2i 

ff2,n) =~Qi (tn_ 1 + t..) ]~ (31b) 

QI") = ~-~ dt 'Q,(t ' )  (31c) 
- I  

In the limit At--* 0, all the above expressions coincide and, therefore, the 
accuracy of the numerical calculation must not depend on the particular 
choice used for ~ " )  if At is small enough. 

Let us suppose, without loss of generality, that t ~ I,. It is 

f '+~dt' Q i ( t ' ) - z ~ " ) O ( t ,  - t - z )  

+ ( t , , -  t) 0~") + dr' ~,( t ' )  O(t + z -  t,,) (32) i 
tn 

where O(t) is the Heaviside step function defined by O(t)=0 for t < 0, 
O(t )= 1 for t>0 ,  and O(0) -1 /2 .  We can continue the process and by 
iteration get 

,t + ~ dt' g2i( t' ) 

= z~")O(~ t .  - t -  z)  + ( t . -  t) ~")0(~ _ . t  + r -  t . )  

+O(t + z -  t.) {(t + ~ -  t.) g2~"+ + ~ - t - z )  

[ r ] ) + Z~t ~'~I. n +  1) + d l '  , ~ i ( t ' )  O ( t  + ~ - -  l n +  1) 
"tn+ | 

m ~ ooo 

= z~Q ~")~ O ( t .  - t - r)  + ( t .  - t) ~ " ) O ( i  _ . t  + ~ -  t . )  

mO 
+ ~ ( t+z- - t .+m)  Q~.+m+l)o( t+z_t .+m) O(t.+m+,-- t - -z)  

m = O  

m 0 

~.+m+ 1)0( t + r-- t.+m+ l) + ~ zltl2~ 
m - - O  

f 
t + r  

+O(t + r-- t.+mo+ t) dt' (2,(t') (33) 
" tn+mo + 1 
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This equation, although apparently complicated, directly suggests a 
method to compute r given t and the value of the integral, i.e. - I n  x [see 
Eq. (16)]. The key point is to realize that the contribution to the integral 
from each time interval I~§ is proport ional  to t2~ "+m). First, we define a 
number u0 as 

In x 
Uo= 12(n ) (34) 

i 

If Uo ~< t n - t we take r = Uo. Otherwise, we define 

t2~ n~ 
Ul = [ U o -  ( t , , -  t)] i21.n + ,) (35) 

The meaning of the above prescription can be easily understood as 
sketched in Fig. 1. Equation (34) defines the length of the base ot" a rectangle 

i 

."  :~i f~n§ : ,',, ,,,~ . 

_< .... _," .... ? /  . 

. t '. t+u , ,  
, : 
L 

'- At  ": (a) 

. _ -..__ 

time r 

n )  

. . . . .  , Y .... i f ~ ~  
, i ,~ . . r - , . ~ - r - -  I 

,,, " i 

t :~ u,  ~ 
to., t' t+ ,  

(b) 

time 

Fig. 1. Sketch of a waiting time assignment in which the rescaling procedure is necessary. In 
the time intervals I~ and I ,  § the value of the involved transition rate f2, is equal to g21 ~) and 
f21 "+11, respectively. The shadowed areas of parts (a) and (b) are both equal to the value 
of the integral, i.e. - I n  x. In part (a) the quantity Uo, given by Eq. (34), is such that the 
final time t + Uo belongs to I ,§  ~. Therefore, the "excess" of area outside I~ is given by 
[u0 (G /)] t') - - f2, . In part (b) the quantity u~ is the length of the base of the rectangle of 
height f21 ~+ ~ with the same area. As u~ is smaller than At, the iterative method would have 
finished, and the waiting time is given by Eq. (36). 
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of height I2(~ "J having the same area as the given value of the integral. 
Nevertheless, the maximum area that can be accounted for the interval I, 

~"~ If this quanti ty is smaller that the value of the integral, there is ( t , - t )  O i . 

is an "excess" of area [ Uo - ( t ,  - t) ] ~2 t~ which must be assigned to the i 

following intervals. To find out how much of the next interval is needed we 
have to divide this area by the value of the function I2~" +~. This defines the 
quantity u t. 

If now u~ ~< ,dt, as it is the case of Fig. 1, we have 

r=(t,,-t)+ut (36) 

while if u~ > z/t we have to consider the value of .Q~(t) in the next interval 
t,, + 2~ intro- /,, + 2. Again, the excess of area (u t -At ) t ' 21"  +~ is divided by 12~ , 

ducing 

u2._(Ul_Zjt)  ~2~ ''+1) t.2~,, + 2 , ( 3 7 )  

If u2  ~ z~t it is 

r=(t,,+l-t)+u2 (38) 

while if u2 > At a quantity u3 is defined, and so on. In general, u s for f > 1 
is generated through the recursive relation 

~ n +  f-- !) 

uj=(uf_l-At) (n+ f)  (39) 
I2i 

and the iterative procedure is stopped when a value u~ ..< At is obtained, and 

r=(t,+t_l--t)+ul, (1I> 1) (40) 

Thus the final time t + r belongs to the interval I,,+t, while t belonged 
to I , .  In general, the residence time is then given by 

r =  u t+  ( 1 - J r .  o)(t, + t - t  - t) (41) 

It is easy to check analytically that the above value of r is really the 
solution of Eq. (16), when the transition rates are considered as constant 
in each of the intervals. For  r given by Eq. (41) we have 
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It t + r  dr' I2~")(t ' ) ;  = 12~")(t,, - t) + ~'2 (n+i l) zlt + ...  + 12~ "+1-1) At + 12~"+t)ut 

--Q(,)( t  -- t)WI21n+l) z l t+  . . .  +u t_ lQ~ "+t- l )  i 

----I2(i")(t,--t)+ulI2(n+l)=Uo f 2 ( " ) i  i = - - l n x  (42) 

where use has been made of Eqs. (34) and (39). In the above calculation 
we have considered 1 > 1, but the cases l = 0 and l = 1 are trivial. 

The numerical algorithm for the evaluation of z can be formulated in 
a slightly different, although equivalent, form, which is simplier to imple- 
ment in actual simulations. We start from 

In x 
r<~ (43) 

and generate the succession ( f  t> 1) 

~ n +  f - -  1) 
t q- z ( f )  - -  tn + f -- l = ff2(n + f )  ( t +  1"(f - l )  

i 
- t, ,+f_ t) (44) 

The iteration is concluded when a value t + z tz~ < t, +/ is  obtained, and the 
waiting time r is given by r tt). 

In the preceding discussion we have supposed that a quantity u t<  At 
is reached for large enough 1. Nevertheless, we have seen in Sec. II that 
such ut might not exist when the limit in Eq. (7) converges, i.e. if in the 
discretized approximation it i s  

lim nt'2~") = 0 (45) 
n --~ OO 

When a value u~<At can not be obtained, even in the limit 1 ~  o0, the 
system is frozen in state i. In practice, a lot of simulation time may be 
needed to verify whether the system is frozen, because it would require to 
extrapolate to t ~ ~ .  Therefore, it is more efficient to proceed as follows. 
A maximum simulation time, tsim, is fixed from the beginning, and when- 
ever a waiting time r is obtained such that t + r > tsim, the trajectory of the 
system is stopped, with the system staying in the same state it was at time t. 
This determines the evolution up to time tsim, although no identification of 
the frozen trajectories is made. In this way, the parameters s~ ~176 defined by 
Eq. (24) play no explicit role in the simulation of the system. 

822/89/3-.4-16 
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Let us emphasize that the time discretization saves much computer 
time, not only because of the simpler evaluation of the waiting time at each 
state of the system, but also because the time intervals are fixed, and the 
transition rates associate to each of them are constant along the simulation. 
Therefore, they do not need to be reevaluated every time there is a transi- 
tion in the system~ 

V. APPLICATION TO THE ONE-DIMENSIONAL ISING MODEL 

Here we are going to apply the GWT algorithm developed in the 
previous sections to the one-dimensional Ising model with nearest neighbor 
interactions. The Hamiltonian is 

+oo 

) f f = - J  y' trjtrj+, (46) 
j - -  --oo 

where J >  0, and trj= _+ 1. The dynamics of the model is given by single- 
spin-flip Glauber dynamics. ~~ Thus the probability p(a, t) of finding the 
system in state tr satisfies the master equation 

d + ~  p(a, t)= ~ [ Wj(Rja) p(Rjtr, t ) -  Wj(a) p(tr, t)] (47) 
j - "  ~ o o  

where Rja is the configuration obtained from a by flipping the j th  spin, i.e. 
by changing aj into -aj. The transition rates are given by 

Wj(tr; T ) =  ~ ) 1-----~-- tr j ( t r j_  I + o ' j + , )  (48) 

with 

2J 
y(T) = tanh ~ (49) 

ksT 

This choice of the transition rates guarantees that they verify the detailed 
balance condition for arbitrary 0c(T). A reasonable physical choice for this 
function is (11) 

(3) ~(T) = 0% exp - (50) 

which introduces an activation energy barrier B that is to be surmounted 
by any spin in order to flip. The constant 0c o will be used to set up the time 
scale and, therefore, it will be taken equal to unity in the following. 
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Attention will be focused on the behavior of the adimensional average 
energy per particle, 

e =  - ( a j a : + , )  (51)  

when the system is submitted to a thermal cycle, i.e. it is cooled down to 
low temperatures, and afterwards reheated. The equilibrium value of the 
energy is (~~ 

J 
eo = -- tanh ~ (52) 

kBT 

Along the thermal cycle the transition rates, given by Eq. (48), depend 
on time through the temperature, which is assumed to be externally con- 
trolled. An analytical study of this system can be found in ref. 11. Here we 
are going to consider that the temperature varies linearly in time with a 
rate p, i.e. 

dT 
~ =  -T- p (53) 
art 

where the minus and plus signs correspond to the cooling and heating 
processes, respectively. 

We have performed Monte Carlo simulation of the system, using the 
GWT algorithm. We have considered a lattice of N = 500 spins with periodic 
boundary conditions. The external barrier has been taken B = 4J, as in ref. 11. 
We start the cooling program from a temperature To. First, we put the 
system in the all-spin-up state, and let it relax towards equilibrium at con- 
stant temperature To. Once equilibrium is reached, time is initialized for 
each run and the cooling program is started. The cooling program is 
finished when the energy reaches a constant value at low temperatures. 
This defines in a natural way the maximum time tsim as the time corre- 
sponding to the lowest temperature during the cooling process. As the 
temperature at which the system departs from equilibrium is an increasing 
function of p,(R~) the initial temperature To of the cycle should be lowered 
with decreasing p, so as not to spend too much time over the equilibrium 
curve. Then the system is reheated, until the initial temperature To is 
recovered. 

As the transition rates depend on time through the temperature, 
_ 

the piecewise approximation consists in considering them constant along 
intervals of small width AT. A reasonable value of this parameter is 
k BAT/J = 0.01, which we have used in our simulation. We have checked 
that smaller values of AT lead to the same results. Since the temperature 
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varies linearly in time with a rate p, the width d t  of the intervals I,  defined 
by Eq. (30) is d t = d T / p .  We have chosen for the transition rates the 
approximation in Eq. (3 l a), i.e. we gave them the values corresponding to 
the final temperature of the interval. 

Besides, we have taken advantage of the n-fold way procedure intro- 
duced by Bortz, Kalos and Lebowitz. (7) Let us consider a given configura- 
tion of spins tr. The possible transitions consist in the flip of one spin, and 
they have transition rates depending only on the flipping spin and its two 
nearest neighbors, through the combination 

~,=�89 (54) 

If we introduce 

W;.(T) = a(T)[ 1 - 2y(T)] (55) 

the transition rate for the i th spin can be expressed as 

Wi(tr; T ) =  W~=a,(T) (56) 

Thus we classify the spins in our system in three groups, depending on the 
two neighbors being (a) both parallel to the considered spin, 2i= 1, (b) one 
parallel and one antiparallel, 2 i=0,  or (c) both antiparallel, 2 i = -  1. All 
the spins belonging to the same class have the same transition rate, as 
indicated in Fig. 2. 

We introduce two arrays LOOK(N) and IBLOQ(N). The array 
IBLOQ has the spins ordered according to their class. Let n a be the 
number of spins in class 2 and m~ the number of spins whose class number 
is less than 2. Then IBLOQ(m~ + 1) through IBLOQ(m~+ 1) contains the 
spins of class 2. The second array LOOK gives the position of the spins in 

(a) (b) (c) 

)t-- +1 ~.--0 ~.=-1 

(1-~,) ~ "" = ~ w~= 5 w~=~- ~ 5 (~+~,) 

Fig. 2. The three classes of spins in the one-dimensional lsing model, attending to the value 
of its transition rate. The index of the class and the corresponding value of the transition rate 
are also shown. 
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IBLOQ, i.e. if IBLOQ( i )= j  it is L O O K ( j ) =  i. Both arrays are necessary 
because when the ith spin flips not only its class changes, but also the class 
of its nearest neighbors. These changes can be summarized in two simple 
rules: (1) the class of the i th spin reverses its sign. Of course, class 2 = 0 is 
invariant. (2) The class of the adjacent spins changes by + 1 or - 1  
depending whether they are antiparallel or parallel to the flipping one. The 
global transition rate from a given configuration a is given by 

f2(a; T) = ~ Wi(a; T) = ~ n~ W~( T) (57) 
i 3. 

To be concrete, let us consider the cooling process. According to the 
general GWT algorithm, the steps to generate a trajectory starting from a 
given configuration a are: 

1. We evaluate 12(a; T~), where T~ is the temperature in the first time 
interval, T~ = T o - p  At. A waiting time r~ is assigned according to the 
method discussed in the previous section, i.e. 

lnxl  (58) 
rll~ = --12(a; TI) 

This time must be rescaled by the procedure given by Eq. (44) when it 
exceeds At, giving rise to the waiting time r~ in the configuration a. Of 
course, if the waiting time z~ exceeds the maximum time /sire the trajectory 
is finished. 

2. The transition made by the system at t = z~ is selected in two steps. 
The idea is similar to the constant temperature case, ~7~ but we have to up- 
date the transition rates if t > At. Let us suppose that t belongs to the inter- 
val I~, and then T= T,,. A class of spins 2, with probability 

n~ W,~(T,,) 
Px(T,) = (59) 

s T~) 

is chosen drawing a random number in the interval (0, 1). 
Afterwards, the spin of this class which actually flips is taken at ran- 

dom, with a random integer q~ uniformly distributed in the interval [ 1, n~]. 
The particular spin which flips is i = IBLOQ(m~ + q=). Thus we have to 
rearrange the two arrays IBLOQ and LOOK, reversing the sign of the 
class of the i th spin, without varying the class of the remainder. Besides, 
the class of the nearest neighbors also changes as indicated above. In order 
to do this, we look for the positions of the neighbors in IBLOQ, that are 
given by L O O K ( / +  1), and make the proper rearrangements. It is impor- 
tant to remark that whenever IBLOQ is reordered we have to change 
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LOOK, according to its definition. Of course, na and m~ also change after 
each transition. From here the algorithm proceed as discussed in Sec. III. 

In Table I we compare the efficiency of the proposed GWT algorithm, 
measured by CPU time, with the usual implementation of Metropolis. In 
the Metropolis program we have performed At Monte Carlo steps (MCS) 
at each temperature T,, before changing the temperature by an amount 
+ AT. This simulates a process with a rate of variation of the temperature 
p. We have used the Berkeley random number generator (RANF) for both 
algorithms and carried out the simulation in a Digital DEC-3000 AXP 
workstation. For the interval of values of the cooling rate under considera- 
tion, the GWT algorithm is faster than the Metropolis one, the ratios of 
the respective CPU time ranging from 1.5 to 30, approximately. This ratio 
increases as the rate p decreases. Of course, its specific value may depend 
on the random number generator and the computer used. The rates con- 
sidered are not artificially small, but ld.ying in the range usually considered 
in the literature. ~2' 13) 

As an example, in Fig. 3 a hysteresis cycle is plotted. Both the numeri- 
cal results from the GWT Monte Carlo simulation and the analytical 
expressions in ref. 11 are shown. It is seen that they agree, showing that the 
GWT algorithm leads to the correct result. Of course, by means of the 
Metropolis procedure the curves are practically the same. It must be 
noticed that the values of the rate p are somehow restricted in the 
Metropolis algorithm. The temperature steps AT must be small in order to 
can consider the transition rates accurately constant in each of the inter- 
vals. On the other hand, the corresponding time discretization At cannot be 
smaller than one MCS. Therefore it is not possible to have arbitrarily large 

Table I. Comparison of CPU Time (in seconds) 
for the Metropolis and GWT Algorithms, along 

10 Runs" 
i i i  

k n To/J k Hp/J Metropolis G W T  

4.0 10 -2 24.6 16.2 
3.0 10 - 3 169.2 59.3 
2.0 10 -4 1037.5 110.4 
1.5 10 - 5 7607.5 234.8 

" A very good average is obtained with 1000 trajectories. 
Both the initial value and the rate of variation of the tem- 
perature in the thermal cycle are also indicated. The effi- 
ciency of the G W T  algorithm increases when p decreases, 
since the cycle reaches lower temperatures and waiting 
times are larger. 
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-0.2 

-0.4 

-0.6 

-0.8 

Io o.s i 2'.s . . . . . . .  15 
KsTIJ 

:3 315 

Fig. 3. Comp~irison of the thermal cycles of energy obtained from GWT Monte Carlo 
simulation (diamonds) and the evaluation of the analytical expressions in ref. 11 (solid line). 
The law of variation of the temperature is given by Eq. (53), with a rate ksp/J= 10 -2. The 
dotted line is the equilibrium energy. 

rates p, while the proposed GWT algorithm is free of this restriction. The 
temperature step ,aT must be also small, but it is possible to take an 
arbitrarily small time discretization At. 

VI. CONCLUSIONS 

We have developed a Monte Carlo algorithm for simulating model 
systems whose dynamics is described in terms of master equations with 
time-dependent transition rates. The algorithm is based on a waiting time 
description, i.e. each realization of the stochastic process is obtained by 
giving to the system a waiting time z t in the initial state i. At t = r~ it goes 
to another state j, where it remains a waiting time r2, etc. This GWT algo- 
rithm reduces to the well-known B KL procedure when the transition rates 
are time independent, and therefore it can be considered as its "generaliza- 
tion" to the case of time dependent transition rates. 

As compared with the Metropolis algorithm this approach has some 
advantages, both from a theoretical and a practical point of view. First, 
as it is shown in the Appendix, this waiting time description appears 
naturally when the master equation is transformed into an integral equation. 
Besides, the GWT algorithm gives relevant information about the peculiar 
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dynamics of systems described by master equations with time-dependent 
transition rates. When the transition rates vanish in the long time limit, the 
algorithm is able to identify which trajectories are frozen at a given time t, 
i.e. those realizations which would have no more transitions even after 
waiting an infinite time. This may be used to measure the loss of ergodicity 
of the system, leading to the departure from equilibrium and to phenomena 
related with a glass-like transition. 

The exact calculation of waiting times is rather involved in general, 
and an accurate and efficient procedure is discussed in See. IV. It is based 
on approximating the transition rates by piecewise constant functions 
through time intervals of small width At. Afterwards, an iterative method 
is shown to generate the correct waiting time within the above approxima- 
tion, becoming exact in the limit d t -~  O. Besides, the procedure is easily 
implemented in the computer. 

We have applied the GWT algorithm to the one-dimensional Ising 
model with Glauber dynamics. Attention has been focused on the evolution 
of the energy along thermal cycles of cooling and reheating. The tem- 
perature evolves linearly with time, being p its rate of variation. In order 
to evaluate the waiting times with the iterative procedure of See. IV, the 
temperature is approximated by a piecewise constant function through 
intervals of width ,dT. The results from the GWT algorithm agree with the 
analytical expressions obtained in ref. 11. Besides, for the interval of values 
of p considered, the GWT simulation is faster than the corresponding 
implementation of Metropolis, in which the temperature is kept constant 
for d t  = d T / p  MCS steps, after which the temperature is varied by _+AT. 

In other systems, the GWT algorithm is also expected to be faster than 
the Metropolis one under the adequate conditions, when the waiting times 
are large. This happens when the transition rates are small, as it is the case 
in systems displaying a laboratory glass-like transition when cooled up to 
low temperatures. An example can be seen in ref. 9. Thus one step of the 
GWT algorithm corresponds to many MCS in Metropolis, making the 
former more efficient. This is not surprising, since the same situation shows 
up when the BKL algorithm is compared to the Metropolis one for time 
independent rates. 

APPENDIX A: THEORETICAL DERIVATION 

Here we are going to show that the GWT Monte Carlo algorithm 
presented in See. III provides a numerical solution of the master equation. 
It is easy to show that Eq. (1), with an arbitrary initial condition 

pi(t = 0 ) =  p,.(0) (A1) 
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is equivalent to the integral equation 

pi( t )=pi(O) e-I'oat'a'(t') + ~ dtl Wo.(t~) pj(t~) e-i$, d,'a,(,') (A2) 
j ~ i  

Our starting point will be the above integral representation of the 
master equation. It is convenient for the proof to introduce an iterative 
solution, 

pi(t) = p;(0) e-i'od"a,t,') 

+ ~ 1~(0) dtl e -I~ dt'aj~,'~ Wo.(t, ) e-i',, Jt'Q,t,'~ 
j ~ i  

+ ~ p~(O) dtl dt2 
k # j  j # i  

f x e-I;" at' akC,') IJZjk( t2 ) e-i',~ at' a~{t') Wo.(tl ) e-J,, d,' a,,t') + ... 

_ tO) t l ) (  t2~(t) + --. 
- - P i  ( t )+Pi  t )+p~ (A3) 

obtained by successive substitution of the integral equation (A2) on its 
right hand side. Eq. (A3) for the probability p,(t) of finding the system in 

~o~ state i at time t can be understood in a simple way. The first term, P i , 

accounts for the probability that the system remains in state i at time t 
because there has been no transitions in the time interval (0, t). The second 
term, p ~ ,  gives the contribution corresponding to only one transition in 
the time interval (0, t), the system stays in state j until an instant t~, at 
which it goes into state i, remaining afterwards there until t. In general, the 
term p~V~ describes a "trajectory" with v transitions, the last one ending in 
state i. 

Now we are going to prove that the proposed GWT algorithm 
simulate the master equation, concretely it leads to the iterative solution, 
Eq. (A3). In our numerical simulation we will have N r  trajectories of the 
system, indexed by a parameter ~ = 1 .... , Nr .  Let us define 

__ ~1 if ~th run is in state i at time t, 
nia(t ) (A4) 

0 any other case 

The total number of trajectories in state i at time t is 

NT 

Ni( t )=  ~ ni~(t) (A5) 
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and the probability of finding the system in state i at time t is given by 

Ni(t) 
p,(t) - (A6) 

Nr 

in the limit of a large number of trajectories, formally Nr ~ oo. In order to 
make compatible Eq. (A6) with the initial condition p;(0), we must impose 

N,(0) 
p~(O)- Nr  (A7) 

We write the number of trajectories in state i as 

oo 

N~(t)= ~ N~")(t) (A8) 
v - - 0  

where N~V)(t) is the number of runs in state i at time t, after v transitions 
in the .time interval (0, t). We are going to show that the series in Eq. (A8) 
coincides with the iterative solution of the master equation of Eq. (A3), i.e. 
each term N~ v) leads to p~V)in the limit of a large number of trajectories. 
Taking into account Eqs. (A4)-(A5), we have 

NT 

N~"'(t) Z - `") t = n,.~ ( ) ( A 9 )  
o:----1 

where _(v) n g~ is defined as n,~, but restricted to v transitions in the time inter- 
val (0, t). 

Let us begin writing n (~ for the ath run. By definition, there is no i0t 

transition in the time interval (0, t). According to step 1 of the proposed 
GWT algorithm, it will be equal to unity if x~  <q*(0)  (the trajectory is 
frozen) or if the waiting time f t . >  t, when xt~ >I q*(0). Therefore, 

n~(t)=n(~ ,~(0) { O[ q*(0) - x ,~]+O[x,~ - q*(0) ] O(r~. - t)} (A10) 

where O(x) is Heaviside's step function. We have written the index of the 
trajectory ~ in the random variables explicitly to remark that they are dif- 
ferent for each run. From Eq. (A9), particularized for v = 0, we obtain the 
number of realizations in state i at time t with no transitions, 

NT 
(0) N, ( t )=  ~ ni~(O){O[q*(O)-x,~] +O[x,~ q*(0)] O( r ,~ - t )}  (Al l )  

o t = l  
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In the limit of a large (infinite) number of realizations NT, we will 
obtain the average of the above expression over the random variable x~, 
uniformly distributed in the interval (0, 1), 

N~~ = Ni(O ) A,(t) (A12) 

where A~(t) is the average of the expression in brackets of Eq. (All),  

Ai(t)= ( O [ q * ( O ) - x , ]  + O [ x , - q * ( O ) ]  O ( r , - t ) )  

= dXl{O[q*(O)--x,] +O[x,--q*(O)] O(z,--t)} 

I 

=q*(O)+ fq dx, O ( z , - t )  (A13) 

Due to the relationship between ~ and x~, Eq. (16), it is easy to evaluate 
the integral, obtaining 

A ~( t) = e -~ dt" a,t,') (A14) 

which introduced into Eq. (A12), leads to 

Nt~ = N~(0) e-f~ dt'a,t,'l 
i (A15) 

By using Eqs. (A6)-(A7) we arrive at the simulation result for the contribu- 
tion to p, (t) with no transitions 

r176 = p , ( 0 )  e -~,d''~,t'')  P i  , (A16) 

in agreement with the zero-th order term in the iterative solution of the 
master equation, Eq. (A3). 

Let us consider now the case of only one transition in the time interval 
(0, t). For the 0cth realization we have, taking into account steps 1-3 of the 
algorithm, 

n(1)t ,~ t t )=  Z nj~(O)O[Xl~-q*(O)] O(t-Zl~)O[y,~-P~.-)(r ,~)]  

x O[ 1 -- P;.+ )(~ l~) - Y ,~] 

x {O[q*(v,~)-x2~] +O[xz . -q* ( r ,~ ) ]  O(~:,~+z2~- t)} (A17) 

The system starts in a state j ~ i, the first two Heaviside's functions account 
for the condition that the first transition time ~ belongs to the interval 
(0, t), the following two select that the final state of the transition at t = ~ ~ 
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is state i, and the last three (in brackets) account for the second transition 
time r~  + r2~ being greater than the considered time t or the system being 
frozen for ever in state i. 

The total number of runs in state i at time t, with only one transition 
in the time interval (0, t) is 

NT 
N~l'(t) = ~ n(')( t ) ia  (A18) 

or=! 

and in the limit Nr ~ ~ we obtain the average of the product of 
Heaviside's functions in Eq. (A17) over the random variables x~, x: 
and y~, uniformly distributed in (0, 1). Therefore, 

N~')(t) = ~ Nj(O)Bo.(t ) (A19) 

with 

Bu(t).= (O[xt -q*(O)]  O ( t - r t )  O[yt -P~-) (r , ) ]  O[1-P,~.+)(r , ) -  y , ]  

• {O[q*(r , ) - -X2]  +O[x2- -q i*(r t )  ] O(V, + V 2 - - t ) } )  

= dx, dy, dx20[x , -q*(O)]  O ( t - r , ) O [ y , - P ( - ) (  u r,)]  

( + ) ( r ) - Y l ]  x O[1-P~j  l 

x {O[q*(r~)-x2] +O[x2-q*(r , ) ]  O(r, + r 2 - t ) }  (A20) 

The integral over x2 is similar to the one performed in Eq. (A13), yielding 

I 

fo dXz{O[q*(r,)-x2] +O[x2-q*(r , ) ]  O(r, + r2- t )}  =e -g, at'a,(,') 
(A21) 

It is straightforward to carry out the integration over Y t, 

f •  dy, O[y , -P~- ' (v , ) ]  O [ 1 - P ( + ' ( v  ) - y , ]  0 l 

= 1--P~7)(rl)--Pb+)(r,)=Po(r,) (A22) 

where we have made use of Eq. (22). Therefore, coming back to Eq. (A20), 

Bo.(t) = dxl O(t-- ri) Pu(rl) e-i'~, dt'a,(t') 
(0) 

(A23) 
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and taking into account Eq. (16) to change the integration variable, 

B/j(t) = I :  dzl f2j(rl) e -l~ a"aJ(")O( t -  vl) Pu(rl)  e - lh  a,'o,(,') 

= drl e-io' a,'a~(,')Wo(rt ) e-i ' ,  at'a,(,') (A24) 

Thus, by using Eq. (A19), together with Eq. (A7), we arrive at the simula- 
tion value for the probability of finding the system in state i, with only one 
transition in the time interval (0, t), 

plt'(t) = ~  ~ pj(O) B,j(t) 
j ~ i  

= ~. pj(O) dz~ e -Io' ,tt'aj~t')Wv.(zl) e -I', a,'a,~t'~ (A25) 
j ~ i  

This express!on agrees with the corresponding term in the iterative solution 
of the master equation, Eq. (A3). 

In a similar way, all the terms p~"~ from the simulation can be built 
and it can be shown that they coincide with the result from the iterative 
solution. Aside from notation problems, the proof is not different from the 
case v = 1, and it will not be given here. 
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